A fast transient potassium current in thalamic relay neurons: kinetics of activation and inactivation.
نویسندگان
چکیده
1. Whole-cell voltage-clamp techniques were used to record K+ currents in relay neurons (RNs) that had been acutely isolated from rat thalamic ventrobasal complex and maintained at 23 degrees C in vitro. Tetrodoxin (TTX; 0.5 microM) was used to block Na+ currents, and reduced extracellular levels of Ca2+ (1 mM) were used to minimize contributions from Ca2+ current (ICa). 2. In RNs, depolarizing commands activate K+ currents characterized by a substantial rapidly inactivating (time constant approximately 20 ms) component, the features of which correspond to those of the transient K+ current (IA) in other preparations, and by a smaller, more slowly activating K+ current, "IK". IA was reversibly blocked by 4-aminopyridine (4-AP, 5 mM), and the reversal potential varied with [K+]o as predicted by the Nernst equation. 3. IA was relatively insensitive to blockade by tetraethylammonium [TEA; 50%-inhibitory concentration (IC50) much much greater than 20 mM]; however, two components of IK were blocked with IC50S of 30 microM and 3 mM. Because 20 mM TEA blocked 90% of the sustained current while reducing IA by less than 10%, this concentration was routinely used in experiments in which IA was isolated and characterized. To further minimize contamination by other conductances, 4-AP was added to TEA-containing solutions and the 4-AP-sensitive current was obtained by subtraction. 4. Voltage-dependent steady-state inactivation of peak IA was described by a Boltzman function with a slope factor (k) of -6.5 and half-inactivation (V1/2) occurring at -75 mV. Activation of IA was characterized by a Boltzman curve with V1/2 = -35 mV and k = 10.8. 5. IA activation and inactivation kinetics were best fitted by the Hodgkin-Huxley m4h formalism. The rate of activation was voltage dependent, with tau m decreasing from 2.3 ms at -40 mV to 0.5 ms at +50 mV. Inactivation was relatively voltage independent and nonexponential. The rate of inactivation was described by two exponential decay processes with time constants (tau h1 and tau h2) of 20 and 60 ms. Both components were steady-state inactivated with similar voltage dependence. 6. Temperature increases within the range of 23-35 degrees C caused IA activation and inactivation rates to become faster, with temperature coefficient (Q10) values averaging 2.8. IA amplitude also increased as a function of temperature, albeit with a somewhat lower Q10 of 1.6. 7. Several voltage-dependent properties of IA closely resemble those of the transient inward Ca2+ current, IT. (ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons.
1. To perform simulations of the various modes of action potential generation in thalamic relay neurons, we developed Hodgkin-and-Huxley style mathematical equations that describe the voltage dependence and kinetics of activation and inactivation of four different currents, including the transient, low-voltage-activated Ca2+ current (IT), the rapidly inactivating transient K+ current (IA), the ...
متن کاملTransient enhancement of low-threshold calcium current in thalamic relay neurons after corticectomy.
1. The alterations of voltage-sensitive calcium currents produced in thalamic cells by injury were investigated under voltage clamp using patch-clamp recordings in the whole-cell configuration. 2. One day after unilateral cortical ablation in immature rats (postnatal day 7), low-threshold transient calcium (T) currents in acutely isolated thalamic relay neurons (RNs) were increased by 68% compa...
متن کاملA novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus.
The inhibitory GABAergic projection of thalamic nucleus reticularis (nRt) neurons onto thalamocortical relay cells (TCs) is important in generating the normal thalamocortical rhythmicity of slow wave sleep, and may be a key element in the production of abnormal rhythms associated with absence epilepsy. Both TCs and nRt cells can generate prominent Ca(2+)-dependent low-threshold spikes, which ev...
متن کاملTransient Ca2+ currents in neurons isolated from rat lateral habenula.
1. The properties of the low-voltage-activated transient Ca2+ current (LVA, IT) that underlies rhythmic burst firing in neurons of the lateral habenula (LHb) were examined to further our understanding of mechanisms that promote rhythmogenesis in the CNS. We compared these properties with those of IT in thalamic ventrobasal relay neurons (IVB) and of the more slowly inactivating ITs of thalamic ...
متن کاملDifferential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia.
CA1 pyramidal neurons are highly vulnerable to transient cerebral ischemia. In vivo studies have shown that the excitability of CA1 neurons progressively decreased following reperfusion. To reveal the mechanisms underlying the postischemic excitability change, total potassium current, transient potassium current, and delayed rectifier potassium current in CA1 neurons were studied in hippocampal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 66 4 شماره
صفحات -
تاریخ انتشار 1991